Classification of organic quinoa crops using multispectral aerial imagery and machine learning techniques

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Crop mapping is a vital tool for agricultural management and food security that can benefit from remote sensing data. The purpose of this research is to use machine learning (ML) techniques to classify quinoa crops from multispectral images. The spectral reflectance of five optical bands is used to develop classification models that are tested for diverse quinoa phenological phases. Deep learning methods Segnet and Unet were investigated, as well as Decision Trees, Discriminant Analysis, K nearest Neighbor, Support Vector Machines, Adaboost and Random Forest. Data was collected from quinoa crop fields in Cabana, Puno region in Peru. The multispectral images were captured using an Unmanned Aircraft System (UAS) from a height of 50 meters. Deep learning methods leave behind other approaches in the classification job, according to the results.

Idioma originalInglés
Título de la publicación alojada2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control
Subtítulo de la publicación alojadaFor the Development of Sustainable Agricultural Systems, ICA-ACCA 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665494083
DOI
EstadoPublicada - 2022
Evento2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2022 - Virtual, Online, Chile
Duración: 24 oct. 202228 oct. 2022

Serie de la publicación

Nombre2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022

Conferencia

Conferencia2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2022
País/TerritorioChile
CiudadVirtual, Online
Período24/10/2228/10/22

Huella

Profundice en los temas de investigación de 'Classification of organic quinoa crops using multispectral aerial imagery and machine learning techniques'. En conjunto forman una huella única.

Citar esto