TY - GEN
T1 - Bridging linguistic typology and multilingual machine translation with multi-view language representations
AU - Oncevay, Arturo
AU - Haddow, Barry
AU - Birch, Alexandra
N1 - Publisher Copyright:
© 2020 Association for Computational Linguistics
PY - 2020
Y1 - 2020
N2 - Sparse language vectors from linguistic typology databases and learned embeddings from tasks like multilingual machine translation have been investigated in isolation, without analysing how they could benefit from each other's language characterisation. We propose to fuse both views using singular vector canonical correlation analysis and study what kind of information is induced from each source. By inferring typological features and language phylogenies, we observe that our representations embed typology and strengthen correlations with language relationships. We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy in tasks that require information about language similarities, such as language clustering and ranking candidates for multilingual transfer. With our method, which is also released as a tool, we can easily project and assess new languages without expensive retraining of massive multilingual or ranking models, which are major disadvantages of related approaches.
AB - Sparse language vectors from linguistic typology databases and learned embeddings from tasks like multilingual machine translation have been investigated in isolation, without analysing how they could benefit from each other's language characterisation. We propose to fuse both views using singular vector canonical correlation analysis and study what kind of information is induced from each source. By inferring typological features and language phylogenies, we observe that our representations embed typology and strengthen correlations with language relationships. We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy in tasks that require information about language similarities, such as language clustering and ranking candidates for multilingual transfer. With our method, which is also released as a tool, we can easily project and assess new languages without expensive retraining of massive multilingual or ranking models, which are major disadvantages of related approaches.
UR - http://www.scopus.com/inward/record.url?scp=85117753773&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85117753773
T3 - EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
SP - 2391
EP - 2406
BT - EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics (ACL)
T2 - 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
Y2 - 16 November 2020 through 20 November 2020
ER -