Boosting the performances of the recurrent neural network by the fuzzy min-max

Ryad Zemouri, Florin Gheorghe Filip, Eugenia Minca, Daniel Racoceanu, Noureddine Zerhouni

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

The k-means training algorithm used for the RBF (Radial Basis Function) neural network can have some weakness like empty clusters, the choice of the cluster number and the random choice of the centers of theses clusters. In this paper, we use the Fuzzy Min Max technique to boost the performances of the training algorithm. This technique is used to determine the number of the k centers and to initialize correctly these k centers. The k-means algorithm always converges to the same result for all the tests.

Idioma originalInglés
Páginas (desde-hasta)69-90
Número de páginas22
PublicaciónRomanian Journal of Information Science and Technology
Volumen12
N.º1
EstadoPublicada - 2009
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Boosting the performances of the recurrent neural network by the fuzzy min-max'. En conjunto forman una huella única.

Citar esto