Big Data Recommender System for Encouraging Purchases in New Places Taking into Account Demographics

Hugo Alatrista-Salas, Isaías Hoyos, Ana Luna, Miguel Nunez-del-Prado

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Recommendation systems have gained popularity in recent years. Among them, the best known are those that select products in stores, movies, videos, music, books, among others. The companies, and in particular, the banking entities are the most interested in implementing these types of techniques to maximize the purchases of potential clients. For this, it is necessary to process a large amount of historical data of the users and convert them into useful information that allows predicting the products of interest for the user and the company. In this article, we analyze two essential problems when using systems, one of which is to suggest products of one commerce to those who have never visited that place, and the second is how to prioritize the order in which users buy certain products or services. To confront these drawbacks, we propose a process that combines two models: latent factor and demographic similarity. To test our proposal, we have used a database with approximately 65 million banking transactions. We validate our methodology, achieving an increase in the average consumption in the selected sample.

Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data - 6th International Conference, SIMBig 2019, Proceedings
EditoresJuan Antonio Lossio-Ventura, Nelly Condori-Fernandez, Jorge Carlos Valverde-Rebaza
EditorialSpringer
Páginas115-128
Número de páginas14
ISBN (versión impresa)9783030461393
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento6th International Conference on Information Management and Big Data, SIMBig 2019 - Lima, Perú
Duración: 21 ago. 201923 ago. 2019

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1070 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th International Conference on Information Management and Big Data, SIMBig 2019
País/TerritorioPerú
CiudadLima
Período21/08/1923/08/19

Huella

Profundice en los temas de investigación de 'Big Data Recommender System for Encouraging Purchases in New Places Taking into Account Demographics'. En conjunto forman una huella única.

Citar esto