Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection

Anselmo Ferreira, Siovani C. Felipussi, Carlos Alfaro, Pablo Fonseca, John E. Vargas-Munoz, Jefersson A. Dos Santos, Anderson Rocha

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

54 Citas (Scopus)


The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.

Idioma originalInglés
Número de artículo7517389
Páginas (desde-hasta)4729-4742
Número de páginas14
PublicaciónIEEE Transactions on Image Processing
EstadoPublicada - oct. 2016
Publicado de forma externa


Profundice en los temas de investigación de 'Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection'. En conjunto forman una huella única.

Citar esto