Backing Up Control of a Self-Driving Truck-Trailer Vehicle with Deep Reinforcement Learning and Fuzzy Logic

Eduardo Bejar, Antonio Moran

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

This paper presents a control strategy for autonomous truck-trailer systems based on deep reinforcement learning (Deep RL). The deep deterministic policy gradient (DDPG) is used for training the controller using a reward function defined in terms of the desired final state of the system. A fuzzy-logic approach is employed to avoid the truck-trailer jackknife state. Simulation results show that the designed controller exhibits similar performance to state-of-the-art controllers such as the linear-fuzzy controller but with a much simpler design process.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas202-207
Número de páginas6
ISBN (versión digital)9781538675687
DOI
EstadoPublicada - 2 jul. 2018
Evento2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018 - Louisville, Estados Unidos
Duración: 6 dic. 20188 dic. 2018

Serie de la publicación

Nombre2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018

Conferencia

Conferencia2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018
País/TerritorioEstados Unidos
CiudadLouisville
Período6/12/188/12/18

Huella

Profundice en los temas de investigación de 'Backing Up Control of a Self-Driving Truck-Trailer Vehicle with Deep Reinforcement Learning and Fuzzy Logic'. En conjunto forman una huella única.

Citar esto