Backing Up Control of a Self-Driving Truck-Trailer Vehicle with Deep Reinforcement Learning and Fuzzy Logic

Eduardo Bejar, Antonio Moran Cardenas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

This paper presents a control strategy for autonomous truck-trailer systems based on deep reinforcement learning (Deep RL). The deep deterministic policy gradient (DDPG) is used for training the controller using a reward function defined in terms of the desired final state of the system. A fuzzy-logic approach is employed to avoid the truck-trailer jackknife state. Simulation results show that the designed controller exhibits similar performance to state-of-the-art controllers such as the linear-fuzzy controller but with a much simpler design process.
Idioma originalEspañol
Título de la publicación alojada2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018
Páginas202-207
Número de páginas6
EstadoPublicada - 14 feb. 2019
Publicado de forma externa

Citar esto