Back-translation as strategy to tackle the lack of corpus in natural language generation from semantic representations

Marco Antonio Sobrevilla Cabezudo, Simon Mille, Thiago Alexandre Salgueiro Pardo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

8 Citas (Scopus)

Resumen

This paper presents an exploratory study that aims to evaluate the usefulness of back-translation in Natural Language Generation (NLG) from semantic representations for non-English languages. Specifically, Abstract Meaning Representation and Brazilian Portuguese (BP) are chosen as semantic representation and language, respectively. Two methods (focused on Statistical and Neural Machine Translation) are evaluated on two datasets (one automatically generated and another one human-generated) to compare the performance in a real context. Also, several cuts according to quality measures are performed to evaluate the importance (or not) of the data quality in NLG. Results show that there are still many improvements to be made but this is a promising approach.

Idioma originalInglés
Título de la publicación alojadaMSR@EMNLP-IJCNLP 2019 - 2nd Workshop on Multilingual Surface Realisation, Proceedings
EditorialAssociation for Computational Linguistics (ACL)
Páginas94-103
Número de páginas10
ISBN (versión digital)9781950737765
EstadoPublicada - 2019
Publicado de forma externa
Evento2nd Workshop on Multilingual Surface Realisation, MSR@EMNLP-IJCNLP 2019 - Hong Kong, China
Duración: 3 nov. 2019 → …

Serie de la publicación

NombreMSR@EMNLP-IJCNLP 2019 - 2nd Workshop on Multilingual Surface Realisation, Proceedings

Conferencia

Conferencia2nd Workshop on Multilingual Surface Realisation, MSR@EMNLP-IJCNLP 2019
País/TerritorioChina
CiudadHong Kong
Período3/11/19 → …

Huella

Profundice en los temas de investigación de 'Back-translation as strategy to tackle the lack of corpus in natural language generation from semantic representations'. En conjunto forman una huella única.

Citar esto