Automatic vehicle counting method based on principal component pursuit background modeling

J. Quesada, P. Rodriguez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

42 Citas (Scopus)

Resumen

Estimating the number of vehicles present in traffic video sequences is a common task in applications such as active traffic management and automated route planning. There exist several vehicle counting methods such as Particle Filtering or Headlight Detection, among others. Although Principal Component Pursuit (PCP) is considered to be the state-of-the-art for video background modeling, it has not been previously exploited for this task. This is mainly because most of the existing PCP algorithms are batch methods and have a high computational cost that makes them unsuitable for real-time vehicle counting. In this paper, we propose to use a novel incremental PCP-based algorithm to estimate the number of vehicles present in top-view traffic video sequences in real-time. We test our method against several challenging datasets, achieving results that compare favorably with state-of-the-art methods in performance and speed: an average accuracy of 98% when counting vehicles passing through a virtual door, 91% when estimating the total number of vehicles present in the scene, and up to 26 fps in processing time.

Idioma originalInglés
Título de la publicación alojada2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings
EditorialIEEE Computer Society
Páginas3822-3826
Número de páginas5
ISBN (versión digital)9781467399616
DOI
EstadoPublicada - 3 ago. 2016
Evento23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, Estados Unidos
Duración: 25 set. 201628 set. 2016

Serie de la publicación

NombreProceedings - International Conference on Image Processing, ICIP
Volumen2016-August
ISSN (versión impresa)1522-4880

Conferencia

Conferencia23rd IEEE International Conference on Image Processing, ICIP 2016
País/TerritorioEstados Unidos
CiudadPhoenix
Período25/09/1628/09/16

Huella

Profundice en los temas de investigación de 'Automatic vehicle counting method based on principal component pursuit background modeling'. En conjunto forman una huella única.

Citar esto