Asymptotic stability at infinity for differentiable vector fields of the plane

Carlos Gutierrez, Benito Pires, Roland Rabanal

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

Let X : R2 {set minus} over(D, -)σ → R2 be a differentiable (but not necessarily C1) vector field, where σ > 0 and over(D, -)σ = {z ∈ R2 : {norm of matrix} z {norm of matrix} ≤ σ}. Denote by R (z) the real part of z ∈ C. If for some ε{lunate} > 0 and for all p ∈ R2 {set minus} over(D, -)σ, no eigenvalue of Dp X belongs to (- ε{lunate}, 0] ∪ {z ∈ C : R (z) ≥ 0}, then: (a) for all p ∈ R2 {set minus} over(D, -)σ, there is a unique positive semi-trajectory of X starting at p; (b) it is associated to X, a well-defined number I (X) of the extended real line [- ∞, ∞) (called the index of X at infinity) such that for some constant vector v ∈ R2 the following is satisfied: if I (X) is less than zero (respectively greater or equal to zero), then the point at infinity ∞ of the Riemann sphere R2 ∪ {∞} is a repellor (respectively an attractor) of the vector field X + v.

Idioma originalInglés
Páginas (desde-hasta)165-181
Número de páginas17
PublicaciónJournal of Differential Equations
Volumen231
N.º1
DOI
EstadoPublicada - 1 dic. 2006
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Asymptotic stability at infinity for differentiable vector fields of the plane'. En conjunto forman una huella única.

Citar esto