Applying multifractal analysis to remotely sensed data for assessing PYVV infection in potato (Solanum tuberosum L.) crops

Perla Chávez, Christian Yarlequé, Oreste Piro, Adolfo Posadas, Víctor Mares, Hildo Loayza, Carlos Chuquillanqui, Percy Zorogastúa, Jaume Flexas, Roberto Quiroz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

Multispectral reflectance imagery and spectroradiometry can be used to detect stresses affecting crops. Previously, we have shown that changes in spectral reflectance and vegetation indices detected viral infection 14 days before visual symptoms were noticed by the trained eye. Herein we present evidence that shows that the application of multifractal analysis and wavelet transform to spectroradiometrical data improves the diagnostic power of the remote sensing-based methodology proposed in our previous work. The diagnosis of viral infection was effectively enhanced, providing the earliest detection ever reported, as anomalies were detected 29 and 33 days before appearance of visual symptoms in two experiments.

Idioma originalInglés
Páginas (desde-hasta)1197-1216
Número de páginas20
PublicaciónRemote Sensing
Volumen2
N.º5
DOI
EstadoPublicada - may. 2010
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Applying multifractal analysis to remotely sensed data for assessing PYVV infection in potato (Solanum tuberosum L.) crops'. En conjunto forman una huella única.

Citar esto