Anomaly Detection in Mixed Time-Series Using A Convolutional Sparse Representation with Application to Spacecraft Health Monitoring

Barbara Pilastre, Gustavo Silva, Loic Boussouf, Stephane D'Escrivan, Paul Rodriguez, Jean Yves Tourneret

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

This paper introduces a convolutional sparse model for anomaly detection in mixed continuous and discrete data. This model, referred to as C-ADDICT, builds upon the experiences of our previous ADDICT algorithm. It can handle discrete and continuous data jointly, is intrinsically shift-invariant, and crucially, it encodes each input signal (either continuous or discrete) from a joint activation and uniform combinations of filters, allowing the correlation across the input signals to be captured. The performance of C-ADDICT, is evaluated on a representative dataset composed of real spacecraft telemetries with an available ground-truth, providing promising results.

Idioma originalInglés
Título de la publicación alojada2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas3242-3246
Número de páginas5
ISBN (versión digital)9781509066315
DOI
EstadoPublicada - may. 2020
Evento2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Espana
Duración: 4 may. 20208 may. 2020

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volumen2020-May
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
País/TerritorioEspana
CiudadBarcelona
Período4/05/208/05/20

Huella

Profundice en los temas de investigación de 'Anomaly Detection in Mixed Time-Series Using A Convolutional Sparse Representation with Application to Spacecraft Health Monitoring'. En conjunto forman una huella única.

Citar esto