An iteratively reweighted norm algorithm for total variation regularization

Paul Rodríguez, Brendt Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

27 Citas (Scopus)

Resumen

Total Variation (TV) regularization has become a popular method for a wide variety of image restoration problems, including denoising and deconvolution. Recently, a number of authors have noted the advantages, including superior performance with certain non-Gaussian noise, of replacing the standard ℓ2 data fidelity term with an ℓ1 norm. We propose a simple but very flexible and computationally efficient method, the Iteratively Reweighted Norm algorithm, for minimizing a generalized TV functional which includes both the ℓ2 -TV and and ℓ1-TV problems.

Idioma originalInglés
Título de la publicación alojadaConference Record of the 40th Asilomar Conference on Signals, Systems and Computers, ACSSC '06
Páginas892-896
Número de páginas5
DOI
EstadoPublicada - 2006
Publicado de forma externa
Evento40th Asilomar Conference on Signals, Systems, and Computers, ACSSC '06 - Pacific Grove, CA, Estados Unidos
Duración: 29 oct. 20061 nov. 2006

Serie de la publicación

NombreConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (versión impresa)1058-6393

Conferencia

Conferencia40th Asilomar Conference on Signals, Systems, and Computers, ACSSC '06
País/TerritorioEstados Unidos
CiudadPacific Grove, CA
Período29/10/061/11/06

Huella

Profundice en los temas de investigación de 'An iteratively reweighted norm algorithm for total variation regularization'. En conjunto forman una huella única.

Citar esto