An iteratively reweighted norm algorithm for minimization of total variation functionals

Brendt Wohlberg, Paul Rodriguez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

102 Citas (Scopus)

Resumen

Total variation (TV) regularization has become a popular method for a wide variety of image restoration problems, including denoising and deconvolution. A number of authors have recently noted the advantages of replacing the standard ℓ2 data fidelity term with an ℓ1 norm. We propose a simple but very flexible method for solving a generalized TV functional that includes both the ℓ2-TV ℓ1-TV and ℓ2-TV problems as special cases. This method offers competitive computational performance for ℓ2-TV and is comparable to or faster than any other ℓ1-TV algorithms of which we are aware.

Idioma originalInglés
Páginas (desde-hasta)948-951
Número de páginas4
PublicaciónIEEE Signal Processing Letters
Volumen14
N.º12
DOI
EstadoPublicada - dic. 2007
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'An iteratively reweighted norm algorithm for minimization of total variation functionals'. En conjunto forman una huella única.

Citar esto