An eigenvalue condition for the injectivity and asymptotic stability at infinity

Roland Rabanal

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

Let X: U → ℝ2 be a differentiable vector field defined on the complement of a compact set. We study the intrinsic relation between the asymptotic behavior of the real eigenvalues of the differential DXz and the global injectivity of the local diffeomorphism given by X. This set U induces a neighborhood of ∞ in the Riemann Sphere ℝ2 ∪ {∞}. In this work we prove the existence of a sufficient condition which implies that the vector field X: (U,∞) → (ℝ2, 0), -which is differentiable in U \{∞} but not necessarily continuous at ∞,- has ∞ as an attracting or a repelling singularity. This improves the main result of Gutiérrez-Sarmiento: Asterisque, 287 (2003) 89-102.

Idioma originalInglés
Páginas (desde-hasta)233-250
Número de páginas18
PublicaciónQualitative Theory of Dynamical Systems
Volumen6
N.º2
DOI
EstadoPublicada - 2005
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'An eigenvalue condition for the injectivity and asymptotic stability at infinity'. En conjunto forman una huella única.

Citar esto