AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages

Abteen Ebrahimi, Manuel Mager, Arturo Oncevay, Vishrav Chaudhary, Luis Chiruzzo, Angela Fan, John E. Ortega, Ricardo Ramos, Annette Rios, Ivan Meza-Ruiz, Gustavo A. Giménez-Lugo, Elisabeth Mager, Graham Neubig, Alexis Palmer, Rolando Coto-Solano, Ngoc Thang Vu, Katharina Kann

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

59 Citas (Scopus)

Resumen

Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, syntactic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 Indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-R's zero-shot performance is poor for all 10 languages, with an average performance of 38.48%. Continued pretraining offers improvements, with an average accuracy of 43.85%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 49.12%.

Idioma originalInglés
Título de la publicación alojadaACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditoresSmaranda Muresan, Preslav Nakov, Aline Villavicencio
EditorialAssociation for Computational Linguistics (ACL)
Páginas6279-6299
Número de páginas21
ISBN (versión digital)9781955917216
EstadoPublicada - 2022
Publicado de forma externa
Evento60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Irlanda
Duración: 22 may. 202227 may. 2022

Serie de la publicación

NombreProceedings of the Annual Meeting of the Association for Computational Linguistics
Volumen1
ISSN (versión impresa)0736-587X

Conferencia

Conferencia60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
País/TerritorioIrlanda
CiudadDublin
Período22/05/2227/05/22

Huella

Profundice en los temas de investigación de 'AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages'. En conjunto forman una huella única.

Citar esto