Alternating optimization low-rank expansion algorithm to estimate a linear combination of separable filters to approximate 2D filter banks

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Learn 2D filter banks are currently being used in high-impact applications such convolutional neural networks, convolutional sparse representations, etc. However such filter banks usually have plentiful filters, each being non-separable, accounting for a large portion of the overall computational cost. In this paper we propose a novel and computationally appealing alternating optimization based algorithm to estimate a linear combination of separable (rank-1) filters to approximate 2D filter banks. Our computational results show that the proposed method can be faster than (state-of-the-art) tensor Canonical Polyadic decomposition (CPD) method to obtain an approximation of comparable accuracy.

Idioma originalInglés
Título de la publicación alojadaConference Record of the 50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016
EditoresMichael B. Matthews
EditorialIEEE Computer Society
Páginas954-958
Número de páginas5
ISBN (versión digital)9781538639542
DOI
EstadoPublicada - 1 mar. 2017
Evento50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016 - Pacific Grove, Estados Unidos
Duración: 6 nov. 20169 nov. 2016

Serie de la publicación

NombreConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (versión impresa)1058-6393

Conferencia

Conferencia50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016
País/TerritorioEstados Unidos
CiudadPacific Grove
Período6/11/169/11/16

Huella

Profundice en los temas de investigación de 'Alternating optimization low-rank expansion algorithm to estimate a linear combination of separable filters to approximate 2D filter banks'. En conjunto forman una huella única.

Citar esto