Algorithms For Anomaly Detection on Time Series: A Use Case on Banking Data

Hugo Alatrista-Salas, Jeymi Fabiola Arias Hancco, Luis Espinoza-Villalobos

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The present research aims to present an overview of methods for automatically detecting anomalies in data representing time series. A time series is a sequence of qualitative values obtained at successive times, generally measured with equal intervals. Time series can represent different real-life phenomena, such as the behaviour of the stock market, variations in temperature and other meteorological data, the behaviour of banking credit/debit card consumption, among others. In addition, this work presents a 4-step methodology for preprocessing data and detecting anomalies on a time series dataset representing the spending of debit and credit card customers. A synthetic anomaly injection technique was applied to validate the models. Results can be used to monitor banking behaviour and trigger alarms in case of possible fraud or rare events.

Idioma originalInglés
Páginas (desde-hasta)203-220
Número de páginas18
PublicaciónInformatica (Slovenia)
Volumen49
N.º13
DOI
EstadoPublicada - feb. 2025
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Algorithms For Anomaly Detection on Time Series: A Use Case on Banking Data'. En conjunto forman una huella única.

Citar esto