Algebraic rational cells and equivariant intersection theory

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We provide a notion of algebraic rational cell with applications to intersection theory on singular varieties with torus action. Based on this notion, we study $$\mathbb {Q}$$Q-filtrable varieties: algebraic varieties where a torus acts with isolated fixed points, such that the associated Białynicki-Birula decomposition consists of algebraic rational cells. We show that the rational equivariant Chow group of any $$\mathbb {Q}$$Q-filtrable variety is freely generated by the classes of the cell closures. We apply this result to group embeddings, and more generally to spherical varieties.

Idioma originalInglés
Páginas (desde-hasta)79-97
Número de páginas19
PublicaciónMathematische Zeitschrift
Volumen282
N.º1-2
DOI
EstadoPublicada - 1 feb. 2016

Huella

Profundice en los temas de investigación de 'Algebraic rational cells and equivariant intersection theory'. En conjunto forman una huella única.

Citar esto