Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis

Félix Díaz, Luis Sánchez, Rafael Liza, Jessica Toribio, Nhell Cerna

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaSustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0., LACCEI 2024
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520781
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024 - Hybrid, San Jose, Costa Rica
Duración: 17 jul. 202419 jul. 2024

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
ISSN (versión digital)2414-6390

Conferencia

Conferencia22nd LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2024
País/TerritorioCosta Rica
CiudadHybrid, San Jose
Período17/07/2419/07/24

Huella

Profundice en los temas de investigación de 'Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis'. En conjunto forman una huella única.

Citar esto