TY - GEN
T1 - Accuracy of backscatter coefficient estimation in aberrating media using different phase aberration correction strategies - A simulation study
AU - González, Eduardo
AU - Sheth, Niral
AU - Castañeda, Benjamín
AU - Dahl, Jeremy
AU - Lavarello, Roberto
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/10/20
Y1 - 2014/10/20
N2 - Phase aberration is the distortion of the diffraction pattern when a wave propagates in a medium with an inhomogeneous sound speed. In this study, the accuracy of the estimation of backscatter coefficients (BSCs) in the presence of near-field phase aberrations was studied through simulations. Further, the accuracy was also evaluated when using two different phase aberration correction strategies prior to BSC estimation. Simulations were performed using the FIELD II software for pulsed ultrasound field calculation. The simulation utilized a 45 element, 3.5 MHz linear array with 70% bandwidth. The imaging medium consisted of randomly positioned circular scatterers having a diameter of 176 microns. Near field phase aberrators were applied to the transmit and receive signals of the simulation having 50, 75, and 100 ns RMS strength and a 3 mm correlation length. Phase aberrations were estimated using a multi-lag least squares estimation technique. BSCs were estimated using the reference phantom method and radiofrequency data segments with a length of 14 wavelengths and centered around the transducer transmit focus. BSC estimation accuracy was quantified using the average difference in dB between the theoretical and estimated curves within the -10 dB bandwidth of the transducer. The mean BSC estimation errors were -9.31, -12.82 and -15.58 dB in the presence of the 50, 75 and 100 ns aberrators, respectively. The use of aberration correction on receive was inadequate for the BSC accuracy for all three cases. The estimation errors for the 50 ns, 75 ns and 100 ns aberrators were -7.24, -12.66 dB and -14.68 dB, respectively. In contrast, the use of aberration correction on transmit-receive allowed an accurate BSC estimation, with estimation errors lower than 0.7 dB for the first two cases. These results suggest that phase aberration effects may adversely influence the performance of BSC estimation, and that a robust BSC-based tissue characterization may require compensating for the effects of aberration on both transmit and receive beams.
AB - Phase aberration is the distortion of the diffraction pattern when a wave propagates in a medium with an inhomogeneous sound speed. In this study, the accuracy of the estimation of backscatter coefficients (BSCs) in the presence of near-field phase aberrations was studied through simulations. Further, the accuracy was also evaluated when using two different phase aberration correction strategies prior to BSC estimation. Simulations were performed using the FIELD II software for pulsed ultrasound field calculation. The simulation utilized a 45 element, 3.5 MHz linear array with 70% bandwidth. The imaging medium consisted of randomly positioned circular scatterers having a diameter of 176 microns. Near field phase aberrators were applied to the transmit and receive signals of the simulation having 50, 75, and 100 ns RMS strength and a 3 mm correlation length. Phase aberrations were estimated using a multi-lag least squares estimation technique. BSCs were estimated using the reference phantom method and radiofrequency data segments with a length of 14 wavelengths and centered around the transducer transmit focus. BSC estimation accuracy was quantified using the average difference in dB between the theoretical and estimated curves within the -10 dB bandwidth of the transducer. The mean BSC estimation errors were -9.31, -12.82 and -15.58 dB in the presence of the 50, 75 and 100 ns aberrators, respectively. The use of aberration correction on receive was inadequate for the BSC accuracy for all three cases. The estimation errors for the 50 ns, 75 ns and 100 ns aberrators were -7.24, -12.66 dB and -14.68 dB, respectively. In contrast, the use of aberration correction on transmit-receive allowed an accurate BSC estimation, with estimation errors lower than 0.7 dB for the first two cases. These results suggest that phase aberration effects may adversely influence the performance of BSC estimation, and that a robust BSC-based tissue characterization may require compensating for the effects of aberration on both transmit and receive beams.
KW - Aberration correction
KW - Backscatter coefficient
KW - Phase aberration
KW - Quantitative Ultrasound
UR - http://www.scopus.com/inward/record.url?scp=84910029408&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2014.0608
DO - 10.1109/ULTSYM.2014.0608
M3 - Conference contribution
AN - SCOPUS:84910029408
T3 - IEEE International Ultrasonics Symposium, IUS
SP - 2438
EP - 2441
BT - IEEE International Ultrasonics Symposium, IUS
PB - IEEE Computer Society
T2 - 2014 IEEE International Ultrasonics Symposium, IUS 2014
Y2 - 3 September 2014 through 6 September 2014
ER -