Resumen
En este artículo estudiamos foliaciones de grado dos en el plano proyectivo que acepten integral primera, también, de grado dos. Tales integrales primera definen una familia lineal de cónicas. El criterio de Hilbert-Munford es una poderosa herramienta de la teoría de invariantes geométricos. Una aplicación de esta teoría es la caracterización de la inestabilidad en el espacio de foliaciones de grado dos respecto a la acción por un cambio de coordenadas, y asimismo la caracterización de la estabilidad de las familias lineales de cónicas, ambas dadas por Alcántara. El objeto de este artículo es presentar una prueba alternativa del hecho de que una foliación de grado dos definida por una familia lineal de cónicas es inestable si y solo si la correspondiente familia lineal es inestable.
Idioma original | Español |
---|---|
Páginas (desde-hasta) | 33-52 |
Número de páginas | 20 |
Publicación | Pro Mathematica |
Volumen | 31 |
N.º | 61 |
Estado | Publicada - 1 ene. 2020 |