A stochastic model for automatic extraction of 3D neuronal morphology

Sreetama Basu, Maria Kulikova, Elena Zhizhina, Wei Tsang Ooi, Daniel Racoceanu

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Tubular structures are frequently encountered in bio-medical images. The center-lines of these tubules provide an accurate representation of the topology of the structures. We introduce a stochastic Marked Point Process framework for fully automatic extraction of tubular structures requiring no user interaction or seed points for initialization. Our Marked Point Process model enables unsupervised network extraction by fitting a configuration of objects with globally optimal associated energy to the centreline of the arbors. For this purpose we propose special configurations of marked objects and an energy function well adapted for detection of 3D tubular branches. The optimization of the energy function is achieved by a stochastic, discrete-time multiple birth and death dynamics. Our method finds the centreline, local width and orientation of neuronal arbors and identifies critical nodes like bifurcations and terminals. The proposed model is tested on 3D light microscopy images from the DIADEM data set with promising results.

Idioma originalInglés
Título de la publicación alojadaMedical Image Computing and Computer-Assisted Intervention, MICCAI 2013 - 16th International Conference, Proceedings
Páginas396-403
Número de páginas8
EdiciónPART 1
DOI
EstadoPublicada - 2013
Publicado de forma externa
Evento16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japón
Duración: 22 set. 201326 set. 2013

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 1
Volumen8149 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
País/TerritorioJapón
CiudadNagoya
Período22/09/1326/09/13

Huella

Profundice en los temas de investigación de 'A stochastic model for automatic extraction of 3D neuronal morphology'. En conjunto forman una huella única.

Citar esto