TY - JOUR
T1 - A simple approach to produce tailor-made chitosans with specific degrees of acetylation and molecular weights
AU - Sanchez, L. F.
AU - Cánepa, Jimmy
AU - Kim, Suyeon
AU - Nakamatsu, Javier
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Chitin is a structural polysaccharide that is found in crustaceans, insects, fungi and some yeasts. Chitin deacetylation produces chitosan, a well-studied biopolymer with reported chemical and biological properties for diverse potential applications for drug delivery, metal ion absorption, scaffolds and tissue engineering. Most known properties of chitosan have been determined from samples obtained from a variety of sources and in different conditions, this is, from chitosans with a wide range of degrees of N-acetylation (DA) and molecular weight (MW). However, as for any copolymer, the physicochemical and mechanical characteristics of chitosan highly depend on their monomer composition (DA) and chain size (MW). This work presents a simple methodology to produce chitosans with specific and predictive DA and MW. Reaction with acetic anhydride proved to be an efficient method to control the acetylation of chitosan, DAs between 10.6% and 50.6% were reproducibly obtained. In addition to this, MWs of chitosan chains were reduced in a controlled manner in two ways, by ultrasound and by acidic hydrolysis at different temperatures, samples with MWs between 130 kDa and 1300 kDa were obtained. DAs were determined by 1H-NMR and MWs by gel permeation chromatography.
AB - Chitin is a structural polysaccharide that is found in crustaceans, insects, fungi and some yeasts. Chitin deacetylation produces chitosan, a well-studied biopolymer with reported chemical and biological properties for diverse potential applications for drug delivery, metal ion absorption, scaffolds and tissue engineering. Most known properties of chitosan have been determined from samples obtained from a variety of sources and in different conditions, this is, from chitosans with a wide range of degrees of N-acetylation (DA) and molecular weight (MW). However, as for any copolymer, the physicochemical and mechanical characteristics of chitosan highly depend on their monomer composition (DA) and chain size (MW). This work presents a simple methodology to produce chitosans with specific and predictive DA and MW. Reaction with acetic anhydride proved to be an efficient method to control the acetylation of chitosan, DAs between 10.6% and 50.6% were reproducibly obtained. In addition to this, MWs of chitosan chains were reduced in a controlled manner in two ways, by ultrasound and by acidic hydrolysis at different temperatures, samples with MWs between 130 kDa and 1300 kDa were obtained. DAs were determined by 1H-NMR and MWs by gel permeation chromatography.
M3 - Artículo
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
ER -