A Novel Method to Estimate Parents and Children for Local Bayesian Network Learning

Sergio del Río, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The Markov Blanket of a random variable is the minimum conditioning set of variables that makes the variable independent of all other variables. A core step to estimate the Markov Blanket is the identification of the Parents and Children (PC) variable set. This paper propose a novel Parents and Children discovery algorithm, called Max-Min Random Walk Parents and Children (MMRWPC), which improves the computational burden of the classical Max-Min Parents and Children method (MMPC). The improvement was achieved with a series of modifications, including the introduction of a random walk process to better identifying conditioning sets in the conditional independence (CI) tests, implying in a significantly reduction of expensive high-order CI tests. In a series of experiments with data sampled from benchmark Bayesian networks we show the suitability of the proposed method.

Idioma originalInglés
Título de la publicación alojadaIntelligent Systems and Applications - Proceedings of the 2021 Intelligent Systems Conference IntelliSys
EditoresKohei Arai
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas468-485
Número de páginas18
ISBN (versión impresa)9783030821951
DOI
EstadoPublicada - 2022
Evento Intelligent Systems Conference, IntelliSys 2021 - Virtual, Online
Duración: 2 set. 20213 set. 2021

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen295
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia Intelligent Systems Conference, IntelliSys 2021
CiudadVirtual, Online
Período2/09/213/09/21

Huella

Profundice en los temas de investigación de 'A Novel Method to Estimate Parents and Children for Local Bayesian Network Learning'. En conjunto forman una huella única.

Citar esto