A novel inverse data envelopment analysis model with negative ratio data

Mehdi Soltanifar, Madjid Tavana, Vincent Charles, Mojtaba Ghiyasi, Hamid Sharafi

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Data envelopment analysis (DEA) is a mathematical programming method for evaluating the efficiency of a homogeneous set of decision-making units (DMUs) using multiple inputs and outputs. Inverse DEA estimates a DMU’s input (or output) when some or all DMU outputs (or inputs) are changed. Ratio DEA (DEA-R) combines DEA with ratio analysis to handle ratio data. Real-world DEA-R models often involve negative values for the inputs or outputs. This study presents a novel model for solving inverse DEA problems with negative ratio data for the first time. We present a real-life case study to demonstrate the applicability and efficacy of the DEA models proposed in this study.

Idioma originalInglés
Número de artículo25
PublicaciónOperational Research
Volumen25
N.º2
DOI
EstadoPublicada - jun. 2025

Huella

Profundice en los temas de investigación de 'A novel inverse data envelopment analysis model with negative ratio data'. En conjunto forman una huella única.

Citar esto