A novel ensemble method for high-dimensional genomic data classification

Alexandra Espichan, Edwin Villanueva

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Classifier ensembles have shown to be an attractive approach for dealing with the curse of dimensionality problems in genomic data. The common idea of this approach is to integrate diverse and accurate base predictors in order to obtain a classification system better than its members. Many methods pursue it by introducing perturbations in some aspect of the learning process (examples, features, base learners, etc.). However, many of the existing methodologies do so in a completely random way, without having control of the perturbation process, which can generate unhelpful base predictors that can affect the final performance or the need to use some pruning strategy. In this paper we introduce tEnsemble, a new and simple approach that seeks an adequate balance between diversity and accuracy. This is done by using a previously optimized template feature set, which serves to guide the perturbation process on the feature space in a controlled manner. Experiments carried out on 39 gene expression public data sets showed that this methodology has the potential to produce effective classifier ensemble systems, showing a frequent superiority in relation to Random Forest, a well-established methodology in the area.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018
EditoresHarald Schmidt, David Griol, Haiying Wang, Jan Baumbach, Huiru Zheng, Zoraida Callejas, Xiaohua Hu, Julie Dickerson, Le Zhang
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2229-2236
Número de páginas8
ISBN (versión digital)9781538654880
DOI
EstadoPublicada - 21 ene. 2019
Evento2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018 - Madrid, Espana
Duración: 3 dic. 20186 dic. 2018

Serie de la publicación

NombreProceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018

Conferencia

Conferencia2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018
País/TerritorioEspana
CiudadMadrid
Período3/12/186/12/18

Huella

Profundice en los temas de investigación de 'A novel ensemble method for high-dimensional genomic data classification'. En conjunto forman una huella única.

Citar esto