A non-negative quadratic programming approach to minimize the generalized vector-valued total variation functional

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

We propose a simple but flexible method for solving the generalized vector-valued TV (VTV) functional with a nonnegativity constraint. One of the main features of this recursive algorithm is that it is based on multiplicative updates only and can be used to solve the denoising and deconvolution problems for vector-valued (color) images. This algorithm is the vectorial extension of the IRN-NQP (Iteratively Reweighted Norm Non-negative Quadratic Programming) algorithm [1] originally developed for scalar (grayscale) images, and to the best of our knowledge, it is the only algorithm that explicitly includes a non-negativity constraint for color images within the TV framework.

Idioma originalInglés
Páginas (desde-hasta)314-318
Número de páginas5
PublicaciónEuropean Signal Processing Conference
EstadoPublicada - 2010
Evento18th European Signal Processing Conference, EUSIPCO 2010 - Aalborg, Dinamarca
Duración: 23 ago. 201027 ago. 2010

Huella

Profundice en los temas de investigación de 'A non-negative quadratic programming approach to minimize the generalized vector-valued total variation functional'. En conjunto forman una huella única.

Citar esto