A new morphological measure of histogram bimodality

Miguel Angel Cataño, Joan Climent

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The presence of multiple modes in a histogram gives important information about data distribution for a great amount of different applications. The dip test has been the most common statistical measure used for this purpose. Histograms of oriented gradients (HOGs) with a high bimodality have shown to be very useful to detect highly robust keypoints. However, the dip test presents serious disadvantages when dealing with such histograms. In this paper we describe the drawbacks of the dip test for determining HOGs bimodality, and present a new bimodality test, based on mathematical morphology, that overcomes them.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 17th Iberoamerican Congress, CIARP 2012, Proceedings
Páginas390-397
Número de páginas8
DOI
EstadoPublicada - 2012
Evento17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 - Buenos Aires, Argentina
Duración: 3 set. 20126 set. 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen7441 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012
País/TerritorioArgentina
CiudadBuenos Aires
Período3/09/126/09/12

Huella

Profundice en los temas de investigación de 'A new morphological measure of histogram bimodality'. En conjunto forman una huella única.

Citar esto