A modular architecture for real-time feature-based tracking

Benjamín Castañeda, Yuriy Luzanov, Juan C. Cockburn

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

A modular architecture for real-time feature-based tracking is presented. This architecture takes advantage of temporal and spatial information contained in a video stream, combining robust classifiers with motion estimation to achieve real-time performance. The relationship among features is exploited to obtain a robust detection and a stable tracking. The effectiveness of this architecture is demonstrated in a face tracking system using eyes and lips as features. A pre-processing stage based on skin color segmentation, density maps and low intensity characteristic of facial features reduces the number of image regions that are candidates for eyes and lips. Support Vector Machines are then used in the classification process, whereas a combination of Kalman filters and template matching is used for tracking.

Idioma originalInglés
Páginas (desde-hasta)V-685-V-688
PublicaciónICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volumen5
EstadoPublicada - 2004
Publicado de forma externa
EventoProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing - Montreal, Que, Canadá
Duración: 17 may. 200421 may. 2004

Huella

Profundice en los temas de investigación de 'A modular architecture for real-time feature-based tracking'. En conjunto forman una huella única.

Citar esto