A Deep Learning Approach to Distance Map Generation Applied to Automatic Fiber Diameter Computation from Digital Micrographs

Alain M. Alejo Huarachi, César A. Beltrán Castañón

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Precise measurement of fiber diameter in animal and synthetic textiles is crucial for quality assessment and pricing; however, traditional methods often struggle with accuracy, particularly when fibers are densely packed or overlapping. Current computer vision techniques, while useful, have limitations in addressing these challenges. This paper introduces a novel deep-learning-based method to automatically generate distance maps of fiber micrographs, enabling more accurate fiber segmentation and diameter calculation. Our approach utilizes a modified U-Net architecture, trained on both real and simulated micrographs, to regress distance maps. This allows for the effective separation of individual fibers, even in complex scenarios. The model achieves a mean absolute error (MAE) of (Formula presented.) and a mean square error (MSE) of (Formula presented.), demonstrating its effectiveness in accurately measuring fiber diameters. This research highlights the potential of deep learning to revolutionize fiber analysis in the textile industry, offering a more precise and automated solution for quality control and pricing.

Idioma originalInglés
Número de artículo5497
PublicaciónSensors (Switzerland)
Volumen24
N.º17
DOI
EstadoPublicada - set. 2024

Huella

Profundice en los temas de investigación de 'A Deep Learning Approach to Distance Map Generation Applied to Automatic Fiber Diameter Computation from Digital Micrographs'. En conjunto forman una huella única.

Citar esto