A comparison of the computational performance of Iteratively Reweighted Least Squares and alternating minimization algorithms for ℓ1 inverse problems

Paul Rodríguez, Brendt Wohlberg

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Alternating minimization algorithms with a shrinkage step, derived within the Split Bregman (SB) or Alternating Direction Method of Multipliers (ADMM) frameworks, have become very popular for ℓ1-regularized problems, including Total Variation and Basis Pursuit Denoising. It appears to be generally assumed that they deliver much better computational performance than older methods such as Iteratively Reweighted Least Squares (IRLS). We show, however, that IRLS type methods are computationally competitive with SB/ADMM methods for a variety of problems, and in some cases outperform them.

Idioma originalInglés
Título de la publicación alojada2012 IEEE International Conference on Image Processing, ICIP 2012 - Proceedings
Páginas3069-3072
Número de páginas4
DOI
EstadoPublicada - 2012
Evento2012 19th IEEE International Conference on Image Processing, ICIP 2012 - Lake Buena Vista, FL, Estados Unidos
Duración: 30 set. 20123 oct. 2012

Serie de la publicación

NombreProceedings - International Conference on Image Processing, ICIP
ISSN (versión impresa)1522-4880

Conferencia

Conferencia2012 19th IEEE International Conference on Image Processing, ICIP 2012
País/TerritorioEstados Unidos
CiudadLake Buena Vista, FL
Período30/09/123/10/12

Huella

Profundice en los temas de investigación de 'A comparison of the computational performance of Iteratively Reweighted Least Squares and alternating minimization algorithms for ℓ1 inverse problems'. En conjunto forman una huella única.

Citar esto