A comparison between Deep Learning architectures for the assessment of breast tumor segmentation using VSI ultrasound protocol

Emilio J. Ochoa, Stefano E. Romero, Thomas J. Marini, Avice O'Connell, Galen Brennan, Jonah Kan, Steven Meng, Yu Zhao, Tim Baran, Benjamin Castaneda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Automatic breast tumor ultrasound segmentation is one of the most critical components in the development of tools for breast cancer diagnosis. Several deep learning algorithms have been tested with public and private datasets but none of them has been designed for asynchronous protocol ultrasound acquisition. In this work, a dataset collected through the Volume Sweep Imaging protocol for breast ultrasound (VSI-B) was used. A comparative analysis of convolutional neural networks for segmentation was carried out, including the preliminary stages of data cleaning and preprocessing. The networks evaluated were: U-NET, Attention U-NET, Residual U-NET, and multi-input attention U-NET; among which the multi-input attention U-NET was identified as the best model, achieving a 72.45% Dice coefficient after a leave-one-out cross-validation with 53 patients. The results show that these semantic segmentation approaches could be useful for automatic tumor segmentation, particularly for asynchronous acquisitions such as VSI-B.

Idioma originalInglés
Título de la publicación alojada46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350371499
DOI
EstadoPublicada - 2024
Evento46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, Estados Unidos
Duración: 15 jul. 202419 jul. 2024

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (versión impresa)1557-170X

Conferencia

Conferencia46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
País/TerritorioEstados Unidos
CiudadOrlando
Período15/07/2419/07/24

Huella

Profundice en los temas de investigación de 'A comparison between Deep Learning architectures for the assessment of breast tumor segmentation using VSI ultrasound protocol'. En conjunto forman una huella única.

Citar esto