A Cellular Neural Network as a Principal Component analyzer

Chao Hui Haung, Wee Kheng Leow, Daniel Racoceanu

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper, A configuration of Cellular Neural Network (CNN) is introduced to implement Principal Component Analysis (PCA). CNN is a parallel computing paradigm. Many researchers considered it as the next generation universal machine and developed so-called CNN universal chips. Based on the capability of CNN, an alternative PCA implementation named Principal Component Analyzing Cellular Neural Network (PCACNN) is proposed. PCA is used to reduce the dimensions of a given dataset in order to extract the principal information of the given dataset. In decades, many researchers presented their investigations based on PCA in order to improve the performance and/or to attack some open issues in specific fields. In this paper, PCA is implemented based on the architecture and capabilities of CNN. Consequently, the computing performance of PCA can be improved as long as the CNN architecture can be realized.

Idioma originalInglés
Título de la publicación alojada2009 International Joint Conference on Neural Networks, IJCNN 2009
Páginas1163-1170
Número de páginas8
DOI
EstadoPublicada - 2009
Publicado de forma externa
Evento2009 International Joint Conference on Neural Networks, IJCNN 2009 - Atlanta, GA, Estados Unidos
Duración: 14 jun. 200919 jun. 2009

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks

Conferencia

Conferencia2009 International Joint Conference on Neural Networks, IJCNN 2009
País/TerritorioEstados Unidos
CiudadAtlanta, GA
Período14/06/0919/06/09

Huella

Profundice en los temas de investigación de 'A Cellular Neural Network as a Principal Component analyzer'. En conjunto forman una huella única.

Citar esto