A beta-inflated mean regression model with mixed effects for fractional response variables

Renzo Fernández, Cristian L. Bayes, Luis Valdivieso

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this article we propose a new mixed-effects regression model for fractional bounded response variables. Our model allows us to incorporate covariates directly to the expected value, so we can quantify exactly the influence of these covariates in the mean of the variable of interest rather than to the conditional mean. Estimation is carried out from a Bayesian perspective. Due to the complexity of the augmented posterior distribution, we use a Hamiltonian Monte Carlo algorithm, the No-U-Turn sampler, implemented using the Stan software. A simulation study was performed showing that our model has a better performance than other traditional longitudinal models for bounded variables. Finally, we applied our beta-inflated mean mixed-effects regression model to real data which consists of utilization of credit lines in the peruvian financial system.

Idioma originalInglés
Páginas (desde-hasta)1936-1957
Número de páginas22
PublicaciónJournal of Statistical Computation and Simulation
Volumen88
N.º10
DOI
EstadoPublicada - 3 jul. 2018

Huella

Profundice en los temas de investigación de 'A beta-inflated mean regression model with mixed effects for fractional response variables'. En conjunto forman una huella única.

Citar esto