Ultrasonic attenuation imaging in a rodent thyroid cancer model

Omar Zenteno, William Ridgway, Sandhya Sarwate, Michael Oelze, Roberto Lavarello

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The incidence of diagnosed thyroid cancer has increased significantly over the last decades. Although advances in ultrasonic imaging have increased the malignancy detection rate, current ultrasonic imaging markers do not provide a sufficient level of diagnostic accuracy to replace biopsy. Recent studies suggest that ultrasound parameters derived from backscatter coefficients may allow differentiating among different types of thyroid tumors and normal tissues in a rodent model ex vivo. In this work, the potential use of attenuation coefficient (AC) estimates for the same purpose was explored. A sample set of 24 excised mice thyroids were scanned using a 40-MHz, f/3 single element transducer. The experimental dataset contained six animals that developed papillary thyroid carcinoma (PTC), five that developed follicular variant papillary thyroid carcinoma (FV-PTC), five that developed c-Cell adenoma (c-Cell) and eight that did not develop thyroid abnormalities (control). AC slope maps were generated with a spectral log difference method using 0.5mm by 0.5mm data blocks. Outliers of each slice due to artifacts in AC estimation were discarded using the Thompson Tau method. Finally, a Kruskal-Wallis test was conducted to analyze if statistically significant differences in the mean AC slope among the four groups existed. The median and interquartile range for each group were 1.29 and 0.22 dB/cm-MHz for the control group, 1.64 and 0.09 dB/cm-MHz for c-Cell, 1.16 and 0.12 dB/cm-MHz for PTC and 1.33 and 0.08 dB/cm-MHz for FV-PTC, respectively. These values are consistent with previous reports of attenuation in thyroid tissues. The Kruskal-Wallis test reported statistically significant differences between the c-Cell group and the other groups of study and between the PTC and FV-PTC groups (p<0.05). These preliminary results suggest that the AC may be used to characterize thyroid tissues.

Original languageEnglish
Title of host publication2013 IEEE International Ultrasonics Symposium, IUS 2013
Pages88-91
Number of pages4
DOIs
StatePublished - 2013
Event2013 IEEE International Ultrasonics Symposium, IUS 2013 - Prague, Czech Republic
Duration: 21 Jul 201325 Jul 2013

Publication series

NameIEEE International Ultrasonics Symposium, IUS
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Conference

Conference2013 IEEE International Ultrasonics Symposium, IUS 2013
Country/TerritoryCzech Republic
CityPrague
Period21/07/1325/07/13

Keywords

  • Attenuation imaging
  • Thyroid cancer
  • Tissue characterization

Fingerprint

Dive into the research topics of 'Ultrasonic attenuation imaging in a rodent thyroid cancer model'. Together they form a unique fingerprint.

Cite this