TY - GEN
T1 - Shear Wave Speed estimator using Continuous Wavelet Transform for Crawling Wave Sonoelastography
AU - Merino, Sebastian
AU - Romero, Stefano E.
AU - Gonzalez, Eduardo A.
AU - Castaneda, Benjamin
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Crawling Wave Sonoelastography (CWS) is an elastography ultrasound-based imaging approach that provides tissue stiffness information through the calculation of Shear Wave Speed (SWS). Many SWS estimators have been developed; however, they report important limitations such as the presence of artifacts, border effects or high computational cost. In addition, these techniques require a moving interference pattern which could be challenging for in vivo applications. In this study, a new estimator based on the Continuous Wavelet Transform (CWT) is proposed. This allows the generation of a SWS image for every sonoelasticity video frame. Testing was made with data acquired from experiments conducted on a gelatin phantom with a circular inclusion. It was excited with two vibration sources placed at both sides with frequencies ranging from 200 Hz to 360 Hz in steps of 20 Hz. Results show small variation of the SWS image across time. Additionally, images were compared with the Phase Derivative method (PD) and the Regularized Wavelength Average Velocity Estimator (R-WAVE). Similar SWS values were obtained for the three estimators within a certain region of interest in the inclusion (At 360 Hz, CWT: 5.01±0.2m/s, PD: 5.11±0.28m/s, R-WAVE: 4.51±0.62m/s) and in the background (At 360 Hz, CWT: 3.67±0.15m/s, PD: 3.69±0.23m/s, R-WAVE: 3.58±0.24m/s). CWT also presented the lowest coefficient of variation and the highest contrast-to-noise ratio for most frequencies, which allows better discrimination between regions.Clinical relevance - This study presents a new Shear Wave Speed estimator for Crawling Wave Sonoelastography, which can be useful to characterize soft tissue and detect lesions.
AB - Crawling Wave Sonoelastography (CWS) is an elastography ultrasound-based imaging approach that provides tissue stiffness information through the calculation of Shear Wave Speed (SWS). Many SWS estimators have been developed; however, they report important limitations such as the presence of artifacts, border effects or high computational cost. In addition, these techniques require a moving interference pattern which could be challenging for in vivo applications. In this study, a new estimator based on the Continuous Wavelet Transform (CWT) is proposed. This allows the generation of a SWS image for every sonoelasticity video frame. Testing was made with data acquired from experiments conducted on a gelatin phantom with a circular inclusion. It was excited with two vibration sources placed at both sides with frequencies ranging from 200 Hz to 360 Hz in steps of 20 Hz. Results show small variation of the SWS image across time. Additionally, images were compared with the Phase Derivative method (PD) and the Regularized Wavelength Average Velocity Estimator (R-WAVE). Similar SWS values were obtained for the three estimators within a certain region of interest in the inclusion (At 360 Hz, CWT: 5.01±0.2m/s, PD: 5.11±0.28m/s, R-WAVE: 4.51±0.62m/s) and in the background (At 360 Hz, CWT: 3.67±0.15m/s, PD: 3.69±0.23m/s, R-WAVE: 3.58±0.24m/s). CWT also presented the lowest coefficient of variation and the highest contrast-to-noise ratio for most frequencies, which allows better discrimination between regions.Clinical relevance - This study presents a new Shear Wave Speed estimator for Crawling Wave Sonoelastography, which can be useful to characterize soft tissue and detect lesions.
UR - http://www.scopus.com/inward/record.url?scp=85122517794&partnerID=8YFLogxK
U2 - 10.1109/EMBC46164.2021.9629702
DO - 10.1109/EMBC46164.2021.9629702
M3 - Conference contribution
C2 - 34892106
AN - SCOPUS:85122517794
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 3994
EP - 3997
BT - 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Y2 - 1 November 2021 through 5 November 2021
ER -