Separable Dictionary Learning for Convolutional Sparse Coding via Split Updates

Jorge Quesada, Paul Rodriguez, Brendt Wohlberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Existing methods for constructing separable 2D dictionary filter banks approximate a set of K non-separable filters via a linear combination of RK separable filters. This approach involves the inefficiency of learning an initial set of non-separable filters, and places an upper bound on the quality of the separable filter banks. In this paper, we propose a method to directly learn a set of K separable dictionary filters from a given image training set by drawing ideas from convolutional dictionary learning (CDL) methods. We show that the separable filters obtained by our method match the performance of an equivalent number of non-separable filters. Furthermore, the computational performance of our learning method is shown to be substantially faster than a state-of-the-art non-separable CDL method for large numbers of filters or large training sets.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4094-4098
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Conference

Conference2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period15/04/1820/04/18

Keywords

  • Convolutional Sparse Representation
  • Dictionary Learning
  • Separable filters

Fingerprint

Dive into the research topics of 'Separable Dictionary Learning for Convolutional Sparse Coding via Split Updates'. Together they form a unique fingerprint.

Cite this