TY - JOUR
T1 - Riemann-Based Algorithms Assessment for Single- And Multiple-Trial P300 Classification in Non-Optimal Environments
AU - Delgado, Juan M.Chau
AU - Achanccaray, David
AU - Villota, Elizabeth R.
AU - Chevallier, Sylvain
N1 - Publisher Copyright:
© 2001-2011 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - The P300 wave is commonly used in Brain-Computer Interface technology due to its higher bit rates when compared to other BCI paradigms. P300 classification pipelines based on Riemannian Geometry provide accuracies on par with state-of-the-art pipelines, without having the need for spatial filters, and also possess the ability to be calibrated with little data. In this study, five different P300 detection pipelines are compared, with three of them using Riemannian Geometry as either feature extraction or classification algorithms. The goal of this study is to assess the viability of Riemannian Geometry-based methods in non-optimal environments with sudden background noise changes, rather than maximizing classification accuracy values. For fifteen subjects, the average single-trial accuracy obtained for each pipeline was: 56.06% for Linear Discriminant Analysis (LDA), 72.13% for Bayesian Linear Discriminant Analysis (BLDA), 63.56% for Riemannian Minimum Distance to Mean (MDM), 69.22% for Riemannian Tangent Space with Logistic Regression (TS-LogR), and 63.30% for Riemannian Tangent Space with Support Vector Machine (TS-SVM). The results are higher for the pipelines based on BLDA and TS-LogR, suggesting that they could be viable methods for the detection of the P300 component when maximizing the bit rate is needed. For multiple-trial classification, the BLDA pipeline converged faster towards higher average values, closely followed by the TS-LogR pipeline. The two remaining Riemannian methods' accuracy also increases with the number of trials, but towards a lower value compared to the aforementioned ones. Single-stimulus detection metrics revealed that the TS-LogR pipeline can be a viable classification method, as its results are only slightly lower than those obtained with BLDA. P300 waveforms were also analyzed to check for evidence of the component being elicited. Finally, a questionnaire was used to retrieve the most intuitive focusing methods employed by the subjects.
AB - The P300 wave is commonly used in Brain-Computer Interface technology due to its higher bit rates when compared to other BCI paradigms. P300 classification pipelines based on Riemannian Geometry provide accuracies on par with state-of-the-art pipelines, without having the need for spatial filters, and also possess the ability to be calibrated with little data. In this study, five different P300 detection pipelines are compared, with three of them using Riemannian Geometry as either feature extraction or classification algorithms. The goal of this study is to assess the viability of Riemannian Geometry-based methods in non-optimal environments with sudden background noise changes, rather than maximizing classification accuracy values. For fifteen subjects, the average single-trial accuracy obtained for each pipeline was: 56.06% for Linear Discriminant Analysis (LDA), 72.13% for Bayesian Linear Discriminant Analysis (BLDA), 63.56% for Riemannian Minimum Distance to Mean (MDM), 69.22% for Riemannian Tangent Space with Logistic Regression (TS-LogR), and 63.30% for Riemannian Tangent Space with Support Vector Machine (TS-SVM). The results are higher for the pipelines based on BLDA and TS-LogR, suggesting that they could be viable methods for the detection of the P300 component when maximizing the bit rate is needed. For multiple-trial classification, the BLDA pipeline converged faster towards higher average values, closely followed by the TS-LogR pipeline. The two remaining Riemannian methods' accuracy also increases with the number of trials, but towards a lower value compared to the aforementioned ones. Single-stimulus detection metrics revealed that the TS-LogR pipeline can be a viable classification method, as its results are only slightly lower than those obtained with BLDA. P300 waveforms were also analyzed to check for evidence of the component being elicited. Finally, a questionnaire was used to retrieve the most intuitive focusing methods employed by the subjects.
KW - P300
KW - Riemannian geometry
KW - brain-computer interfaces
KW - evoked potential
KW - non-optimal environments
UR - http://www.scopus.com/inward/record.url?scp=85097963731&partnerID=8YFLogxK
U2 - 10.1109/TNSRE.2020.3043418
DO - 10.1109/TNSRE.2020.3043418
M3 - Article
C2 - 33296306
AN - SCOPUS:85097963731
SN - 1534-4320
VL - 28
SP - 2754
EP - 2761
JO - IEEE Transactions on Neural Systems and Rehabilitation Engineering
JF - IEEE Transactions on Neural Systems and Rehabilitation Engineering
IS - 12
M1 - 9288777
ER -