TY - GEN
T1 - Quantifying Synthesis and Fusion and their Impact on Machine Translation
AU - Oncevay, Arturo
AU - Ataman, Duygu
AU - van Berkel, Niels
AU - Haddow, Barry
AU - Birch, Alexandra
AU - Bjerva, Johannes
N1 - Publisher Copyright:
© 2022 Association for Computational Linguistics.
PY - 2022
Y1 - 2022
N2 - Theoretical work in morphological typology offers the possibility of measuring morphological diversity on a continuous scale. However, literature in Natural Language Processing (NLP) typically labels a whole language with a strict type of morphology, e.g. fusional or agglutinative. In this work, we propose to reduce the rigidity of such claims, by quantifying morphological typology at the word and segment level. We consider Payne (2017)'s approach to classify morphology using two indices: synthesis (e.g. analytic to polysynthetic) and fusion (agglutinative to fusional). For computing synthesis, we test unsupervised and supervised morphological segmentation methods for English, German and Turkish, whereas for fusion, we propose a semi-automatic method using Spanish as a case study. Then, we analyse the relationship between machine translation quality and the degree of synthesis and fusion at word (nouns and verbs for English-Turkish, and verbs in English-Spanish) and segment level (previous language pairs plus English-German in both directions). We complement the word-level analysis with human evaluation, and overall, we observe a consistent impact of both indexes on machine translation quality.
AB - Theoretical work in morphological typology offers the possibility of measuring morphological diversity on a continuous scale. However, literature in Natural Language Processing (NLP) typically labels a whole language with a strict type of morphology, e.g. fusional or agglutinative. In this work, we propose to reduce the rigidity of such claims, by quantifying morphological typology at the word and segment level. We consider Payne (2017)'s approach to classify morphology using two indices: synthesis (e.g. analytic to polysynthetic) and fusion (agglutinative to fusional). For computing synthesis, we test unsupervised and supervised morphological segmentation methods for English, German and Turkish, whereas for fusion, we propose a semi-automatic method using Spanish as a case study. Then, we analyse the relationship between machine translation quality and the degree of synthesis and fusion at word (nouns and verbs for English-Turkish, and verbs in English-Spanish) and segment level (previous language pairs plus English-German in both directions). We complement the word-level analysis with human evaluation, and overall, we observe a consistent impact of both indexes on machine translation quality.
UR - http://www.scopus.com/inward/record.url?scp=85138321196&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85138321196
T3 - NAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
SP - 1308
EP - 1321
BT - NAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022
Y2 - 10 July 2022 through 15 July 2022
ER -