Abstract

We have measured new observables based on the final state kinematic imbalances in the mesonless production of νμ+A→μ-+p+X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel (δpTy) and perpendicular (δpTx) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δpTy is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. The Fermi gas models presented in this study cannot simultaneously describe features such as QE peak location, width, and the non-QE events contributing to the signal process. Correcting the genie's binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry are observed in δpTx. Better modeling of the binding energy can reduce the bias in neutrino energy reconstruction, and these observables can be applied in current and future experiments to better constrain nuclear effects.

Original languageEnglish
Article number092001
JournalPhysical Review D
Volume101
Issue number9
DOIs
StatePublished - 1 May 2020

Fingerprint

Dive into the research topics of 'Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions'. Together they form a unique fingerprint.

Cite this