Abstract
We measure neutrino charged-current quasielasticlike scattering on hydrocarbon at high statistics using the wideband Neutrinos at the Main Injector beam with neutrino energy peaked at 6 GeV. The double-differential cross section is reported in terms of muon longitudinal (p) and transverse (p) momentum. Cross section contours versus lepton momentum components are approximately described by a conventional generator-based simulation, however, discrepancies are observed for transverse momenta above 0.5 GeV/c for longitudinal momentum ranges 3-5 and 9-20 GeV/c. The single differential cross section versus momentum transfer squared (dσ/dQQE2) is measured over a four-decade range of Q2 that extends to 10 GeV2. The cross section turnover and falloff in the Q2 range 0.3-10 GeV2 is not fully reproduced by generator predictions that rely on dipole form factors. Our measurement probes the axial-vector content of the hadronic current and complements the electromagnetic form factor data obtained using electron-nucleon elastic scattering. These results help oscillation experiments because they probe the importance of various correlations and final-state interaction effects within the nucleus, which have different effects on the visible energy in detectors.
Original language | English |
---|---|
Article number | 121801 |
Journal | Physical Review Letters |
Volume | 124 |
Issue number | 12 |
DOIs | |
State | Published - 27 Mar 2020 |