Abstract
We realized a fast single-photon source based on self-organized quantum dots (QDs). In a p-i-n structure a single electron and a single hole are funnelled into a single InAs quantum dot using a submicron AlOX current aperture. The out-coupling efficiency and emission rate are increased by embedding the single-photon source (SPS) into a micro-cavity of Q = 140. The resulting resonant single-QD diode generates single polarized photons at a repetition rate of 1 GHz exhibiting a second-order correlation function of g(2)(0) = 0. The measured optical response is usually limited by the time resolution of available single-photon detectors based on avalanche diodes. Here we present ultra-fast g(2) correlation functions, obtained with novel superconducting detectors.
Original language | English |
---|---|
Article number | 014003 |
Journal | Semiconductor Science and Technology |
Volume | 26 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Externally published | Yes |