CORN CROPS IDENTIFICATION USING MULTISPECTRAL IMAGES FROM UNMANNED AIRCRAFT SYSTEMS

Fedra Trujillano, Jessenia Gonzalez, Carlos Saito, Andres Flores, Daniel Racoceanu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Corn is cultivated by smallholder farmers in Ancash - Peru and it is one of the most important crops of the region. Climate change and migration from rural to urban areas are affecting agricultural production and therefore, food security. Information about the cultivated extension is needed for the authorities in order to evaluate the impact in the region. The present study proposes corn areas segmentation in multi-spectral images acquired from Unmanned Aerial Vehicles (UAV), using convolutional neural networks. U-net and U-net using VGG11 encoder were compared using dice and IoU coefficient as metrics. Results show that with the second model, 81.5% dice coefficient can be obtained in this challenging task, allowing envisaging an effective and efficient use of this technology, in this hard context.

Original languageEnglish
Title of host publicationIGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4712-4715
Number of pages4
ISBN (Electronic)9781665403696
DOIs
StatePublished - 2021
Event2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Belgium
Duration: 12 Jul 202116 Jul 2021

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2021-July

Conference

Conference2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
Country/TerritoryBelgium
CityBrussels
Period12/07/2116/07/21

Keywords

  • Climate change
  • Corn identification
  • Semantic segmentation
  • UAV

Fingerprint

Dive into the research topics of 'CORN CROPS IDENTIFICATION USING MULTISPECTRAL IMAGES FROM UNMANNED AIRCRAFT SYSTEMS'. Together they form a unique fingerprint.

Cite this