TY - GEN
T1 - Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
AU - Sampén, Denilson
AU - Lavarello, Roberto
N1 - Publisher Copyright:
© 2022 SPIE. All rights reserved.
PY - 2022
Y1 - 2022
N2 - The implementation of architectures based on artificial intelligence and deep learning to support COVID-19 diagnosis has great potential. However, especially in architectures designed at the beginning of the pandemic, they use different databases that do not contain a good amount of chest X-ray images of COVID-19 patients. The present work presents a comparison of three deep learning architectures (COVID-Net, CovXNet and DarkCovidNet) for COVID-19 diagnosis using chest Xray images. First, the architectures were implemented with the databases provided by the authors, to compare the results with those presented in the state of the art. Then, a new database with more than 9000 chest X-ray images of patients with COVID-19, pneumonia and healthy (3305 images for each class), was elaborated using databases from four different institutions around the world. Finally, the database was used to evaluate the original architectures, retrain them and, finally, evaluate the performance of the retrained architectures and compare results. It was identified that the architectures with the best performance and generalizability are DarkCovidNet and CovXNet with a support vector machine stacking algorithm, with an accuracy of 94.04% and 92.02% respectively, for the test data of the new database. 2022 SPIE.
AB - The implementation of architectures based on artificial intelligence and deep learning to support COVID-19 diagnosis has great potential. However, especially in architectures designed at the beginning of the pandemic, they use different databases that do not contain a good amount of chest X-ray images of COVID-19 patients. The present work presents a comparison of three deep learning architectures (COVID-Net, CovXNet and DarkCovidNet) for COVID-19 diagnosis using chest Xray images. First, the architectures were implemented with the databases provided by the authors, to compare the results with those presented in the state of the art. Then, a new database with more than 9000 chest X-ray images of patients with COVID-19, pneumonia and healthy (3305 images for each class), was elaborated using databases from four different institutions around the world. Finally, the database was used to evaluate the original architectures, retrain them and, finally, evaluate the performance of the retrained architectures and compare results. It was identified that the architectures with the best performance and generalizability are DarkCovidNet and CovXNet with a support vector machine stacking algorithm, with an accuracy of 94.04% and 92.02% respectively, for the test data of the new database. 2022 SPIE.
KW - COVID-19
KW - X-ray images
KW - deep learning
KW - image classification
KW - lung
KW - medical imaging
UR - http://www.scopus.com/inward/record.url?scp=85131861055&partnerID=8YFLogxK
U2 - 10.1117/12.2613002
DO - 10.1117/12.2613002
M3 - Conference contribution
AN - SCOPUS:85131861055
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2022
A2 - Mello-Thoms, Claudia R.
A2 - Mello-Thoms, Claudia R.
A2 - Taylor-Phillips, Sian
PB - SPIE
T2 - Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment
Y2 - 21 March 2022 through 27 March 2022
ER -