@inproceedings{d305441de16f4839b4ace656190112c3,
title = "Comparison between U-Net and DeepLabV3 for Crawling Waves Sonoelastography approach",
abstract = "Crawling Wave Sonoelastography is an elastography ultrasound-based approach that provides tissue stiffness information. Two mechanical sources generate an interference pattern on a tissue to obtaining a shear wave speed (SWS) map. Many estimators have been developed with important limitations such as the presence of artifacts, border effects or high computational cost. In this study, semantic segmentation approaches based on convolutional neuronal network (CNN) were performed to enhance the crawling waves differentiation. Training and validation were realized with 220 simulated frames in a range from 200 Hz to 480 Hz. Testing was made with real data acquired from experiments on a gelatin phantom with a circular inclusion vibrating on a range between 200 Hz and 360 Hz with steps of 20 Hz. It is found that comparable SWS map were generated using both architectures and model within a certain region of interest in the inclusion and in the background. Finally, CNNs presented lowest coefficient of variation and the highest contrast-to-noise ratio for most frequencies, which allows better discrimination between regions.",
keywords = "Crawling waves elastography, DeepLabV3, Directional filter, Semantic segmentation, Shear wave speed, U-Net",
author = "Alexys Caytano and Sebastian Merino and Hans Trujillo and Benjamin Castaneda and Romero, {Stefano E.}",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023 ; Conference date: 15-11-2023 Through 17-11-2023",
year = "2023",
doi = "10.1109/SIPAIM56729.2023.10373447",
language = "English",
series = "Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023",
}