Closed-form expressions for the matrix exponential

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We discuss a method to obtain closed-form expressions of f(A), where f is an analytic function and A a square, diagonalizable matrix. The method exploits the Cayley-Hamilton theorem and has been previously reported using tools that are perhaps not sufficiently appealing to physicists. Here, we derive the results on which the method is based by using tools most commonly employed by physicists. We show the advantages of the method in comparison with standard approaches, especially when dealing with the exponential of low-dimensional matrices. In contrast to other approaches that require, e.g., solving differential equations, the present method only requires the construction of the inverse of the Vandermonde matrix. We show the advantages of the method by applying it to different cases, mostly restricting the calculational effort to the handling of two-by-two matrices.

Original languageEnglish
Pages (from-to)329-344
Number of pages16
JournalSymmetry
Volume6
Issue number2
DOIs
StatePublished - 2014

Keywords

  • Cayley-Hamilton theorem
  • Matrix exponential
  • Two-by-two representations
  • Vandermonde matrices

Fingerprint

Dive into the research topics of 'Closed-form expressions for the matrix exponential'. Together they form a unique fingerprint.

Cite this