TY - JOUR
T1 - Binder behavior on chromite-carbon composite pellets
AU - Zambrano, Adolfo Pillihuaman
AU - Takano, Cyro
AU - Mourão, Marcelo Breda
AU - Tagusagawa, Solon Yasuhiko
PY - 2016/11/1
Y1 - 2016/11/1
N2 - The influence of binders on the mechanical properties of chromite, self-reducing pellets, after subjecting to high temperatures, is analyzed in this paper. Bentonite, sodium silicate, and a combination of bentonite with carboxymethyl cellulose (CMC) were tested with different contents. All of the raw materials were characterized by chemical analysis and particle size distribution. The materials were pelletized (P1 to P7). All of the bounded green and dried pellets (P2 to P7) achieved the desired mechanical strengths, and none presented decrepitation. The best performance was obtained by the pellet P7 (4% sodium silicate as binder), with the green strength of 34 N/pellet, the dried strength of 50 N/pellet, and the strength was higher than 110 N/pellet after heat treatment at critical temperatures between 1173 and 1373 K. The unitary reduction reaction fraction was achieved after 10 minutes, at 1773 K.
AB - The influence of binders on the mechanical properties of chromite, self-reducing pellets, after subjecting to high temperatures, is analyzed in this paper. Bentonite, sodium silicate, and a combination of bentonite with carboxymethyl cellulose (CMC) were tested with different contents. All of the raw materials were characterized by chemical analysis and particle size distribution. The materials were pelletized (P1 to P7). All of the bounded green and dried pellets (P2 to P7) achieved the desired mechanical strengths, and none presented decrepitation. The best performance was obtained by the pellet P7 (4% sodium silicate as binder), with the green strength of 34 N/pellet, the dried strength of 50 N/pellet, and the strength was higher than 110 N/pellet after heat treatment at critical temperatures between 1173 and 1373 K. The unitary reduction reaction fraction was achieved after 10 minutes, at 1773 K.
M3 - Artículo
SN - 1516-1439
VL - 19
SP - 1344
EP - 1350
JO - Materials Research
JF - Materials Research
ER -