Abstract
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E ν > 10 11 GeV is derived from acoustic data taken over eight months.
Original language | English |
---|---|
Pages (from-to) | 312-324 |
Number of pages | 13 |
Journal | Astroparticle Physics |
Volume | 35 |
Issue number | 6 |
DOIs | |
State | Published - Jan 2012 |
Externally published | Yes |
Keywords
- Absolute noise level
- Acoustic neutrino detection
- Neutrino flux limit
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Background studies for acoustic neutrino detection at the South Pole'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astroparticle Physics, Vol. 35, No. 6, 01.2012, p. 312-324.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Background studies for acoustic neutrino detection at the South Pole
AU - Abbasi, R.
AU - Abdou, Y.
AU - Abu-Zayyad, T.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Andeen, K.
AU - Auffenberg, J.
AU - Bai, X.
AU - Baker, M.
AU - Barwick, S. W.
AU - Bay, R.
AU - Bazo Alba, J. L.
AU - Beattie, K.
AU - Beatty, J. J.
AU - Bechet, S.
AU - Becker, J. K.
AU - Becker, K. H.
AU - Benabderrahmane, M. L.
AU - Benzvi, S.
AU - Berdermann, J.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bertrand, D.
AU - Besson, D. Z.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Braun, J.
AU - Brown, A. M.
AU - Buitink, S.
AU - Carson, M.
AU - Chirkin, D.
AU - Christy, B.
AU - Clem, J.
AU - Clevermann, F.
AU - Cohen, S.
AU - Colnard, C.
AU - Cowen, D. F.
AU - D'Agostino, M. V.
AU - Danninger, M.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - De Clercq, C.
AU - Demirörs, L.
AU - Denger, T.
AU - Depaepe, O.
AU - Descamps, F.
AU - Desiati, P.
AU - De Vries-Uiterweerd, G.
AU - Deyoung, T.
AU - Díaz-Vélez, J. C.
AU - Dierckxsens, M.
AU - Dreyer, J.
AU - Dumm, J. P.
AU - Ehrlich, R.
AU - Eisch, J.
AU - Ellsworth, R. W.
AU - Engdegrd, O.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Fedynitch, A.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer-Wasels, T.
AU - Foerster, M. M.
AU - Fox, B. D.
AU - Franckowiak, A.
AU - Franke, R.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Geisler, M.
AU - Gerhardt, L.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Goodman, J. A.
AU - Grant, D.
AU - Griesel, T.
AU - Groß, A.
AU - Grullon, S.
AU - Gurtner, M.
AU - Ha, C.
AU - Hallgren, A.
AU - Halzen, F.
AU - Han, K.
AU - Hanson, K.
AU - Heinen, D.
AU - Helbing, K.
AU - Herquet, P.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Homeier, A.
AU - Hoshina, K.
AU - Hubert, D.
AU - Huelsnitz, W.
AU - Hülß, J. P.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Ishihara, A.
AU - Jacobsen, J.
AU - Japaridze, G. S.
AU - Johansson, H.
AU - Joseph, J. M.
AU - Kampert, K. H.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kelley, J. L.
AU - Kenny, P.
AU - Kiryluk, J.
AU - Kislat, F.
AU - Klein, S. R.
AU - Köhne, J. H.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Kowarik, T.
AU - Krasberg, M.
AU - Krings, T.
AU - Kroll, G.
AU - Kuehn, K.
AU - Kuwabara, T.
AU - Labare, M.
AU - Lafebre, S.
AU - Laihem, K.
AU - Landsman, H.
AU - Larson, M. J.
AU - Lauer, R.
AU - Lünemann, J.
AU - Madsen, J.
AU - Majumdar, P.
AU - Marotta, A.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Meagher, K.
AU - Merck, M.
AU - Mészáros, P.
AU - Meures, T.
AU - Middell, E.
AU - Milke, N.
AU - Miller, J.
AU - Montaruli, T.
AU - Morse, R.
AU - Movit, S. M.
AU - Nahnhauer, R.
AU - Nam, J. W.
AU - Naumann, U.
AU - Nießen, P.
AU - Nygren, D. R.
AU - Odrowski, S.
AU - Olivas, A.
AU - Olivo, M.
AU - O'Murchadha, A.
AU - Ono, M.
AU - Panknin, S.
AU - Paul, L.
AU - Pérez De Los Heros, C.
AU - Petrovic, J.
AU - Piegsa, A.
AU - Pieloth, D.
AU - Porrata, R.
AU - Posselt, J.
AU - Price, P. B.
AU - Prikockis, M.
AU - Przybylski, G. T.
AU - Rawlins, K.
AU - Redl, P.
AU - Resconi, E.
AU - Rhode, W.
AU - Ribordy, M.
AU - Rizzo, A.
AU - Rodrigues, J. P.
AU - Roth, P.
AU - Rothmaier, F.
AU - Rott, C.
AU - Ruhe, T.
AU - Rutledge, D.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Sander, H. G.
AU - Santander, M.
AU - Sarkar, S.
AU - Schatto, K.
AU - Schmidt, T.
AU - Schönwald, A.
AU - Schukraft, A.
AU - Schultes, A.
AU - Schulz, O.
AU - Schunck, M.
AU - Seckel, D.
AU - Semburg, B.
AU - Seo, S. H.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Silvestri, A.
AU - Slipak, A.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stephens, G.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stössl, A.
AU - Stoyanov, S.
AU - Strahler, E. A.
AU - Straszheim, T.
AU - Stür, M.
AU - Sullivan, G. W.
AU - Swillens, Q.
AU - Taavola, H.
AU - Taboada, I.
AU - Tamburro, A.
AU - Tepe, A.
AU - Ter-Antonyan, S.
AU - Tilav, S.
AU - Toale, P. A.
AU - Toscano, S.
AU - Tosi, D.
AU - Turčan, D.
AU - Van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - Van Overloop, A.
AU - Van Santen, J.
AU - Vehring, M.
AU - Voge, M.
AU - Walck, C.
AU - Waldenmaier, T.
AU - Wallraff, M.
AU - Walter, M.
AU - Weaver, Ch
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whitehorn, N.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Williams, D. R.
AU - Wischnewski, R.
AU - Wissing, H.
AU - Wolf, M.
AU - Woschnagg, K.
AU - Xu, C.
AU - Xu, X. W.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsk, P.
PY - 2012/1
Y1 - 2012/1
N2 - The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E ν > 10 11 GeV is derived from acoustic data taken over eight months.
AB - The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E ν > 10 11 GeV is derived from acoustic data taken over eight months.
KW - Absolute noise level
KW - Acoustic neutrino detection
KW - Neutrino flux limit
UR - http://www.scopus.com/inward/record.url?scp=80155182099&partnerID=8YFLogxK
U2 - 10.1016/j.astropartphys.2011.09.004
DO - 10.1016/j.astropartphys.2011.09.004
M3 - Article
AN - SCOPUS:80155182099
SN - 0927-6505
VL - 35
SP - 312
EP - 324
JO - Astroparticle Physics
JF - Astroparticle Physics
IS - 6
ER -